
8. Structures, File I/O, Recursion

18th October

IIT Kanpur

1C Course, Programming club, Fall 2008



Basic of Structures

• Definition: A collection of one or more 
different variables with the same handle 
(same name).

C Course, Programming club, Fall 2008 2

struct point {
char name[30];
int x;
int y;
double temperature;

}

struct point pt;

struct point {
…
.
.

} pt, pt1;



Basic of Structures contd…

• Access an element

• Example

{program: basic_of_structures.c}

C Course, Programming club, Fall 2008 3

structure-name.member

printf(“x = %d, y = %d\n”, pt.x, pt.y);



Basic of Structures contd…

• Structs can also contain other structs.

• To access its element:

C Course, Programming club, Fall 2008 4

struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle rect;

rect.pt1.x;



Structures and Functions

• When structures are passed into functions all of 
their values are copied. (pass by value)

• A function must return the structure to affect the 
target structure.

{program: structures_and_functions.c}
{program: structures_and_functions1.c}
• This is a lot of copying of variable values onto and 

off the stack. (inefficient)
• Pointers will be used to make this better.

C Course, Programming club, Fall 2008 5



Arrays of Structures

• Array of Structures act like any other array.

• Memory occupied: the dimensions of the 
array multiply by sizeof(struct tag)
– (Remember) sizeof() is compile time function

C Course, Programming club, Fall 2008 6

struct point pt[3];

pt[0].name = “A”;
pt[0].x = 0;
pt[0].y = 1;

pt[1].name = “B”;
pt[1].x = 4;
pt[1].y = 1;

pt[2].name = “mid”;
pt[2].x = (pt[0].x + pt[1].x)/2;
pt[2].y = (pt[0].y + pt[1].y)/2;



Pointers to Structures

• Pointers are an easier way to manipulate 
structure members by reference

• The entire structure is not passed by value, 
only the address of the first member

• Use arrow operator for accessing the struct
element 

C Course, Programming club, Fall 2008 7

struct Date MyDate, *DatePtr;
DatePtr = &MyDate;
DatePtr->month = 2;
DatePtr->day = 22;



Pointer to Structures contd…

• Example

{program: structures_and_functions_wPtr.c}

C Course, Programming club, Fall 2008 8

struct Date {
int month;
int day;
int year;

};

void AddDecade(struct Date *tmp) {
tmp->year += 10; // or (*tmp).year += 10;

}



Self referencing Structures

• Useful in data structures like trees, linked lists.

• It is illegal for a structure to contain an 
instance of itself.
– Soln: Have a pointer to another instance.

C Course, Programming club, Fall 2008 9

struct tnode { /* the tree node */
char *word;
int count; 
struct tnode *left; /* left child */
struct tnode *right; /* right child */

};



Typedef

• Use typedef for creating new data type names

this the name length a synonym for int. 
Afterwards, you can do:

• In context of structs, you can do:

C Course, Programming club, Fall 2008 10

typedef int length;

length number = 4;

typedef struct tnode *TreePtr; typedef struct tnode {
.
.

} TreeNode;



Unions

• A union is a memory location that is shared by 
two or more different types of variables.

• Each of ival, fval, cval have the same location 
in memory.

• Usage is similar to that of structs:

C Course, Programming club, Fall 2008 11

union u_tag {
int ival;
float fval;
char cval;

} u;

u.ival or u.cval



Bit-fields

• When storage is high cost affair, we need to use 
memory efficiently (e.g in embedded systems)

• Here each of the element takes a bit of memory 
(1 bit)

• The number following the colons represent the 
field length in bits.

C Course, Programming club, Fall 2008 12

struct {
unsigned pin1 : 1;
unsigned pin2 : 1;
unsigned pin3 : 1;

} flags;



FILE I/O

• The file pointer

• Opening a file

• Modes
– r : read, w: write, a: append, r+ : read and create if 

file does not exist, w+, a+, rb, wb, ab, r+b, r+w, r+a

• Closing a file

FILE *fp;

FILE *fp = fopen(“data.txt”, “r”);

fclose(fp);
13C Course, Programming club, Fall 2008



FILE I/O contd…

Some functions for file I/O

fopen() opens a file

fclose() closes a file

fputc() writes a character to a file

fgetc() reads a character from a file

fputs() writes a string to a file

fgets() reads a string to a file

fseek() change file position indicator

ftell() returns to file position indicator

fprintf() similar to printf(), but to a file instead of console

fscanf() similar to scanf(), but to a file instead of console

remove() deletes the file

fflush() flushes the file pipe

14C Course, Programming club, Fall 2008



Supplement topic – I/O from console

• Reading from console
• During program execution

– printf(), scanf(), putc(), getc()

• Just before execution starts (parameters 
passed to the program)

– argc: number of arguments (in above case, 5)
– argv: pointer to array of char pointers

$ ./a.out 3 santa_singh banta_singh happy_singh

int main(int argc, char *argv[])

15C Course, Programming club, Fall 2008



More supplement - Recursion

• Recursion is when a function calls itself.
– Great Utility

– Makes the code easier

• Requirements to use recursion
– A condition to cease at

• otherwise the program would never terminate

• the condition is usually written at the beginning of the 
recursive method

16C Course, Programming club, Fall 2008



Recursion contd…

• example:

/* recursive */
int factr(int n) {

int answer;
if(n==l) return(1);
answer = factr(n-l)*n; /* recursive call */
return(answer);

}

/* non-recursive */
int fact(int n) {

int t, answer;
answer = 1;
for(t=1; t<=n; t++)
answer=answer*(t);
return(answer);

}

17C Course, Programming club, Fall 2008


	8. Structures, File I/O, Recursion
	Basic of Structures
	Basic of Structures contd…
	Basic of Structures contd…
	Structures and Functions
	Arrays of Structures
	Pointers to Structures
	Pointer to Structures contd…
	Self referencing Structures
	Typedef
	Unions
	Bit-fields
	FILE I/O
	FILE I/O contd…
	Supplement topic – I/O from console
	More supplement - Recursion
	Recursion contd…

