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Basic of Structures

• Definition: A collection of one or more 
different variables with the same handle 
(same name).
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struct point {
char name[30];
int x;
int y;
double temperature;

}

struct point pt;

struct point {
…
.
.

} pt, pt1;



Basic of Structures contd…

• Access an element

• Example

{program: basic_of_structures.c}
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structure-name.member

printf(“x = %d, y = %d\n”, pt.x, pt.y);



Basic of Structures contd…

• Structs can also contain other structs.

• To access its element:
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struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle rect;

rect.pt1.x;



Structures and Functions

• When structures are passed into functions all of 
their values are copied. (pass by value)

• A function must return the structure to affect the 
target structure.

{program: structures_and_functions.c}
{program: structures_and_functions1.c}
• This is a lot of copying of variable values onto and 

off the stack. (inefficient)
• Pointers will be used to make this better.
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Arrays of Structures

• Array of Structures act like any other array.

• Memory occupied: the dimensions of the 
array multiply by sizeof(struct tag)
– (Remember) sizeof() is compile time function
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struct point pt[3];

pt[0].name = “A”;
pt[0].x = 0;
pt[0].y = 1;

pt[1].name = “B”;
pt[1].x = 4;
pt[1].y = 1;

pt[2].name = “mid”;
pt[2].x = (pt[0].x + pt[1].x)/2;
pt[2].y = (pt[0].y + pt[1].y)/2;



Pointers to Structures

• Pointers are an easier way to manipulate 
structure members by reference

• The entire structure is not passed by value, 
only the address of the first member

• Use arrow operator for accessing the struct
element 
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struct Date MyDate, *DatePtr;
DatePtr = &MyDate;
DatePtr->month = 2;
DatePtr->day = 22;



Pointer to Structures contd…

• Example

{program: structures_and_functions_wPtr.c}
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struct Date {
int month;
int day;
int year;

};

void AddDecade(struct Date *tmp) {
tmp->year += 10; // or (*tmp).year += 10;

}



Self referencing Structures

• Useful in data structures like trees, linked lists.

• It is illegal for a structure to contain an 
instance of itself.
– Soln: Have a pointer to another instance.
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struct tnode { /* the tree node */
char *word;
int count; 
struct tnode *left; /* left child */
struct tnode *right; /* right child */

};



Typedef

• Use typedef for creating new data type names

this the name length a synonym for int. 
Afterwards, you can do:

• In context of structs, you can do:
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typedef int length;

length number = 4;

typedef struct tnode *TreePtr; typedef struct tnode {
.
.

} TreeNode;



Unions

• A union is a memory location that is shared by 
two or more different types of variables.

• Each of ival, fval, cval have the same location 
in memory.

• Usage is similar to that of structs:
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union u_tag {
int ival;
float fval;
char cval;

} u;

u.ival or u.cval



Bit-fields

• When storage is high cost affair, we need to use 
memory efficiently (e.g in embedded systems)

• Here each of the element takes a bit of memory 
(1 bit)

• The number following the colons represent the 
field length in bits.
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struct {
unsigned pin1 : 1;
unsigned pin2 : 1;
unsigned pin3 : 1;

} flags;



FILE I/O

• The file pointer

• Opening a file

• Modes
– r : read, w: write, a: append, r+ : read and create if 

file does not exist, w+, a+, rb, wb, ab, r+b, r+w, r+a

• Closing a file

FILE *fp;

FILE *fp = fopen(“data.txt”, “r”);

fclose(fp);
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FILE I/O contd…

Some functions for file I/O

fopen() opens a file

fclose() closes a file

fputc() writes a character to a file

fgetc() reads a character from a file

fputs() writes a string to a file

fgets() reads a string to a file

fseek() change file position indicator

ftell() returns to file position indicator

fprintf() similar to printf(), but to a file instead of console

fscanf() similar to scanf(), but to a file instead of console

remove() deletes the file

fflush() flushes the file pipe
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Supplement topic – I/O from console

• Reading from console
• During program execution

– printf(), scanf(), putc(), getc()

• Just before execution starts (parameters 
passed to the program)

– argc: number of arguments (in above case, 5)
– argv: pointer to array of char pointers

$ ./a.out 3 santa_singh banta_singh happy_singh

int main(int argc, char *argv[])
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More supplement - Recursion

• Recursion is when a function calls itself.
– Great Utility

– Makes the code easier

• Requirements to use recursion
– A condition to cease at

• otherwise the program would never terminate

• the condition is usually written at the beginning of the 
recursive method
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Recursion contd…

• example:

/* recursive */
int factr(int n) {

int answer;
if(n==l) return(1);
answer = factr(n-l)*n; /* recursive call */
return(answer);

}

/* non-recursive */
int fact(int n) {

int t, answer;
answer = 1;
for(t=1; t<=n; t++)
answer=answer*(t);
return(answer);

}
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